MediaWiki API result
This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.
Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.
See the complete documentation, or the API help for more information.
{
"compare": {
"fromid": 1,
"fromrevid": 1,
"fromns": 0,
"fromtitle": "Mat\u00e9matika",
"toid": 2,
"torevid": 2,
"tons": 4,
"totitle": "Testwiki:Searching",
"*": "<tr><td colspan=\"2\" class=\"diff-lineno\" id=\"mw-diff-left-l1\">Larik 1:</td>\n<td colspan=\"2\" class=\"diff-lineno\">Larik 1:</td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange\">[[Gambar:Euclid.jpg|thumb|[[Euklides]], mat\u00e9matikawan Yunani, abad kaping 3 SM, kados ingkang kalukisaken d\u00e9ning [[Raffaello Sanzio]] ing salebeting detail punika saking ''[[Sekolah Athena]]''.<ref>Boten wonten parupan utawi katrangan prakawis wujud fisik Euklides ingkang dipundamel wekdal gesangipun ingkang taksih wonten minangka kakunan. Mila, panggambaran Euklides ing salebetipun karya seni gumantung dhumateng daya khayal satunggiling seniman (''pirsani [[Euklides]]'').</ref>]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">'''Mat\u00e9matika''' ([[basa Yunani]]: ''\u03bc\u03b1\u03b8\u03b7\u03bc\u03b1\u03c4\u03b9\u03ba\u03ac''-''math\u0113matik\u00e1'', saking tembung \u03bc\u03ac\u03b8\u03b7\u03bc\u03b1(''m\u00e1thema'') ingkang tegesipun \"sains, \u00e8lmu pangertosan, utawi sinau\" ugi \u03bc\u03b1\u03b8\u03b7\u03bc\u03b1\u03c4\u03b9\u03ba\u03cc\u03c2 (''mathematik\u00f3s'') ingkang tegesipun \"remen sinau\") inggih punika studi [[besaran]], [[struktur]], [[ruwang]], lan [[kalkulus|\u00e9wah-\u00e9wahan]]. Para [[mat\u00e9matikawan]] pados man\u00e9ka [[pola]],<ref>[[Lynn Steen]] (29 April 1988). ''[[The Science of Patterns]]'' [[Sains (jurnal)|Jurnal Sains]], 240: 611\u2013616. lan dipunikhtisaraken ing [http://www.ascd.org/portal/site/ascd/template.chapter/menuitem.1889bf0176da7573127855b3e3108a0c/?chapterMgmtId</del>=<del class=\"diffchange diffchange-inline\">f97433df69abb010VgnVCM1000003d01a8c0RCRD Association for Supervision and Curriculum Development.] {{Webarchive|url</del>=<del class=\"diffchange diffchange-inline\">https://web.archive.org/web/20070929010703/http://www.ascd.org/portal/site/ascd/template.chapter/menuitem.1889bf0176da7573127855b3e3108a0c/?chapterMgmtId</del>=<del class=\"diffchange diffchange-inline\">f97433df69abb010VgnVCM1000003d01a8c0RCRD |date</del>=<del class=\"diffchange diffchange-inline\">2007-09-29 }}, ascd.org</ref><ref>[[Keith Devlin]], ''Mathematics: The Science of Patterns: The Search for Order in Life, Mind and the Universe'' (Scientific American Paperback Library) 1996, ISBN 978-0-7167-5047-5</ref> ngrumusaken [[konjektur]] \u00e9nggal, lan yasa kaleresan liwat [[m\u00e9todhe dh\u00e9dhuksi]] ingkang [[Kakakuan mat\u00e9matika|kaku]] saking [[aksioma|aksioma-aksioma]] lan [[d\u00e9finisi|dh\u00e9finisi-dh\u00e9finisi]] ingkang silih selaras.<ref>Jourdain.</ref></del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>== <ins class=\"diffchange diffchange-inline\">Headline text </ins>==</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Dhisiplin ingkang paling utami ing mat\u00e9matika dhasaripun inggih punika kabetahan kangg\u00e9 pang\u00e9tangan wonten babagan dedagangan, pangukuran siti, ugi pang\u00e9tangan kangg\u00e9 paramalan kadadosan [[astronomi]]. Tiga kabetahan punika limrahipun wonten gegandh\u00e8nganipun kaliyan pambag\u00e9yan umum babagan mat\u00e9matika inggih punika: studi masalah struktur, ruwang lan \u00e9wah-\u00e9wahan.</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>== <ins class=\"diffchange diffchange-inline\">Headline text </ins>==</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><math><ins class=\"diffchange diffchange-inline\">Insert formula here</ins></math></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Pangertosan ingkang prasaja saking mat\u00e9matika inggih punika ng\u00e8lmu \u00e9tang utawi [[aritmatika]], punika wujud pamahaman mat\u00e9matika ingkang paling dhasar.</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>'''<ins class=\"diffchange diffchange-inline\">Bold </ins>text'''''<ins class=\"diffchange diffchange-inline\">Italic </ins>text''</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Wonten pasulayan prakawis: punapa obj\u00e8k-obj\u00e8k mat\u00e9matika kados ta [[wilangan]] lan [[titik (g\u00e9om\u00e8tri)|titik]] dhateng kanthi alami, utawi namung damelan manungsa. Satunggiling mat\u00e9matikawan [[Benjamin Peirce]] nyebat mat\u00e9matika minangka \"\u00e8lmu ingkang nggambaraken simpulan-simpulan ingkang wigatos\".<ref>Peirce, p.97</ref> D\u00e9n\u00e9 tiyang san\u00e8sipun, [[Albert Einstein]] n\u00e9lakaken bilih \"satebihipun ukum-ukum mat\u00e9matika tegesipun kasunyatan, sadaya wau boten mesthi; lan satebihipun sadaya wau mesthi, sadaya wau boten tegesipun kasunyatan.\"<ref name</del>=<del class=\"diffchange diffchange-inline\">certain/></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Langkung pangginaan [[panalaran]] [[logika]] lan [[abstraksi (mat\u00e9matika)|abstraksi]], mat\u00e9matika ngrembaka saking [[pancacahan]], [[kalkulasi|pang\u00e9tangan]], [[pangukuran]], lan pangkajian sistematis dhumateng [[bangun (g\u00e9om\u00e8tri)|bangun]] lan [[gerak|pagerakan]] bendha-bendha fisika. Mat\u00e9matika praktis sampun dados kagiyatan manungsa milai wontenipun [[Sajarah mat\u00e9matika|rekaman kaserat]]. [[Logika|Argum\u00e8ntasi kaku]] sepindhah muncul ing salebetipun [[Mat\u00e9matika Yunani]], mliginipun ing salebetipun karya [[Euklides]], ''[[\u00c8lem\u00e8n Euklides|\u00c8lem\u00e8n]]''. Mat\u00e9matika tansah ngrembaka, upaminipun ing [[Cina]] nalika taun 300 [[Sadurung\u00e9 Mas\u00e8hi|SM]], ing [[India]] nalika taun 100 [[Mas\u00e8hi|M]], lan ing Arab nalika taun 800 M, dumugi jaman [[R\u00e9naisans]], nalika pamanggihan \u00e9nggal mat\u00e9matika silih interaksi kaliyan [[pamanggihan \u00e8lmiah]] \u00e9nggal ingkang ngarah dhumateng paningkatan ingkang rikat ing salebetipun laju pamanggihan mat\u00e9matika ingkang teras dumugi sepriki.<ref>Eves</ref></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Sapunika mat\u00e9matika dipun-ginakaken ing saindhenging donya minangka piranti wigatos ing man\u00e9ka babagan, kalebet [[\u00e8lmu alam]], [[t\u00e8knik]], [[kadhokteran]]/[[m\u00e8dhis]], lan [[\u00e8lmu sosial]] kados ta [[\u00e9konomi]], lan [[psikologi]]. [[Mat\u00e9matika terapan]], cabang mat\u00e9matika ingkang nglingkupi panerapan pangertosan mat\u00e9matika dhumateng babagan-babagan san\u00e8s, ngilhami lan damel panggunaan pamanggihan-pamanggihan mat\u00e9matika \u00e9nggal, lan sok-sok ngarah dhumateng pangembangan dhisiplin-dhisiplin \u00e8lmu ingkang sapenuhipun \u00e9nggal, kados ta [[statistika]] lan [[t\u00e9yori permainan]]. Para mat\u00e9matikawan ugi sinau ing salebetipun [[mat\u00e9matika murni]], utawi mat\u00e9matika kangg\u00e9 pakembangan mat\u00e9matika punika piyambak, tanpa wontenipun panerapan ing salebetipun pikiran, sanadyan panerapan praktis ingkang dados latar munculipun mat\u00e9matika murni kasunyatanipun asring kapanggih ing temb\u00e9 wingking.<ref>Peterson</ref></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>=<del class=\"diffchange diffchange-inline\">= \u00c8timologi </del>==</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Tembung \"mat\u00e9matika\" asalipun saking [[basa Yunani Kuna]] \u03bc\u03ac\u03b8\u03b7\u03bc\u03b1 (''m\u00e1th\u0113ma''), ingkang tegesipun ''pangkajian'', ''panyinaonan'', ''\u00e8lmu'', ingkang ruwang lingkupipun saya ciut, lan teges t\u00e8knisipun dados \"pangkajian mat\u00e9matika\", malah makaten ugi ing jaman kuna. Tembung sipatipun inggih punika \u03bc\u03b1\u03b8\u03b7\u03bc\u03b1\u03c4\u03b9\u03ba\u03cc\u03c2 (''math\u0113matik\u00f3s''), ''gegandh\u00e8ngan kaliyan pangkajian'', utawi ''sregep sinau'', ingkang langkung lebet tegesipun ''mat\u00e9matis''. Sacara mirunggan, {{polytonic|\u03bc\u03b1\u03b8\u03b7\u03bc\u03b1\u03c4\u03b9\u03ba\u1f74 \u03c4\u03ad\u03c7\u03bd\u03b7}} (''math\u0113matik\u1e17 t\u00e9khn\u0113''), ing salebetipun [[basa Latin]] ''ars mathematica'', tegesipun ''seni mat\u00e9matika''.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Wangun jamak asring dipun-ginakaken salebetipun [[basa Inggris]], kados ta ugi ing salebetipun [[basa Prancis]] ''les math\u00e9matiques'' (lan arang dipun-ginakaken minangka turunan wangun tunggal ''la math\u00e9matique''), tegesipun wangun jamak basa Latin ingkang langkung n\u00e9tral ''mathematica'' ([[Cicero]]), dhedhasar wangun jamak basa Yunani \u03c4\u03b1 \u03bc\u03b1\u03b8\u03b7\u03bc\u03b1\u03c4\u03b9\u03ba\u03ac (''ta math\u0113matik\u00e1''), ingkang dipun-ginakaken [[Aristotle]], ingkang pertalan kasaripun ateges \"sadaya prakawis ingkang mat\u00e9matis\".</del><<del class=\"diffchange diffchange-inline\">ref>''[[The Oxford Dictionary of English Etymology]]'', ''[[Oxford English Dictionary]]''</ref> Nanging, salebetipun basa Inggris, tembung bendha ''mathematics'' mundhut wangun tunggal manawi dipungunakaken minangka tembung ''kerja''. Salebetipun rupa pirembagan, mat\u00e9matika asring dipunsingkat minangka ''</del>math<del class=\"diffchange diffchange-inline\">'' ing Am\u00e9rika L\u00e8r lan ''maths'' ing papan san\u00e8s.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">== Sajarah ==</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Gambar:Quipu.png|thumb|left|Satunggiling [[quipu]], ingkang dipungunakaken d\u00e9ning [[Kakaisaran Inca|Inca]] kangg\u00e9 nyathetaken wilangan.]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">{{utama|Sajarah mat\u00e9matika}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[\u00c9volusi]] mat\u00e9matika sok-sok dipunpirsani minangka sadh\u00e8r\u00e8tan [[abstraksi (mat\u00e9matika)|abstraksi]] ingkang tansah tambah kathah, utawi tembung san\u00e8sipun pawiyaran pokok masalah. Abstraksi awal, ingkang ugi lumampah dhumateng kathah k\u00e9wan<ref>S. Dehaene, G. Dehaene-Lambertz and L. Cohen, Abstract representations of numbers in the animal and human brain, ''Trends in Neuroscience'', Vol. 21 (8), Aug 1998, 355-361. http://dx.doi.org/10.1016/S0166-2236(98)01263-6.</ref>, inggih punika prakawis [[wilangan]]: pranyatan bilih kalih apel lan kalih jeruk (minangka conto) gadhah gunggung ingkang sami.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Sasan\u00e8sipun mangertosi cara [[pancacahan|nyacah]] obj\u00e8k-obj\u00e8k ''fisika'', manungsa [[prasajarah]] ugi nepangi cara nyacah besaran ''abstrak'', kados ta [[wektu|wekdal]] \u2014 [[dina|dinten]], [[mangsa]], [[taun]]. [[Aritm\u00e9tika dhasar]] ([[lan]], [[suda]], [[ping]], lan [[para]]) numuti kanthi alami.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Lampah salajengipun mbetahaken [[nulis|panyeratan]] utawi sistem san\u00e8s kangg\u00e9 nyathetaken wilangan, upaminipun [[tali]] utawi senar mawi simpul ingkang dipunsebat [[quipu]] dipungunakaken d\u00e9ning bangsa [[Inca]] kangg\u00e9 nyimpen data numerik. [[Sistem wilangan]] wonten kathah lan man\u00e9ka jinisipun, wilangan kaserat ingkang sepindhah dipunkawruhi wonten ing salebetipun naskah warisan [[Mesir Kuna]] ing [[Karajan Tengah Mesir]], [[Lembaran Mat\u00e9matika Rhind]].</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Gambar:maya.svg|thumb|[[Sistem wilangan Maya]]]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Panggunaan mat\u00e9matika paling kuna inggih punika ing salebetipun [[padagangan]], [[pangukuran siti]], [[lukisan|panglukisan]], lan pola-pola [[tenun|panenunan]] lan panyathetan wekdal lan boten nat\u00e9 ngrembaka wiyar dumugi taun 3000 SM mangajeng nalika tiyang [[Babilonia]] lan [[Mesir Kuna]] wiwit migunakaken [[aritm\u00e9tika]], [[aljabar]], lan [[g\u00e9om\u00e8tri]] kangg\u00e9 pang\u00e9tangan [[pajek]] lan urusan kauangan san\u00e8sipun, yasan lan konstruksi, lan [[astronomi]].<ref>Kline 1990, Chapter 1.</ref> Pangkajian mat\u00e9matika ingkang sistematis ing salebetipun kaleresnipun piyambak dipunwiwiti nalika jaman Yunani Kuna antawis taun 600 lan 300 SM.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Mat\u00e9matika wiwit wekdal punika lajeng mawiyar, lan wonten interaksi migunani antawisipun mat\u00e9matika lan [[sains]], nguntungaken kekalih pihak. Pamanggihan-pamanggihan mat\u00e9matika dipundamel salaminipun sajarah lan lumampah teras dumugi sapunika. Miturut Mikhail B. Sevryuk, ing wulan Januari 2006 terbitan [[Bulletin of the American Mathematical Society]], \"kathahipun makalah lan buku ingkang dipunlibataken ing salebetipun basis data [[Mathematical Reviews]] wiwit taun 1940 (taun sepindhahipun operasinipun MR) sapunika nglangkungi 1,9 yuta, lan nglangkungi 75 \u00e9wu artikel dipuntambahaken dhumateng basis data punika saben taun. Sap\u00e9rangan ageng karya ing samodra punika isinipun [[t\u00e9or\u00e9ma]] mat\u00e9matika \u00e9nggal sarta [[Pambukt\u00e8n Mat\u00e9matika|bukti-buktinipun]].\"<ref>Sevryuk</ref></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">== Ilham, mat\u00e9matika murni lan terapan, lan \u00e8st\u00e8tika ==</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Gambar:GodfreyKneller-IsaacNewton-1689.jpg|left|thumb|Sir [[Isaac Newton]] (1643-1727), satunggaling [[panemu|pamanggih]] [[kalkulus|kalkulus infinitesimal]].]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">{{utama|Ka\u00e9ndahan mat\u00e9matika}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Matematika muncul nalika ngadhepi masalah-masalah ingkang rumit ingkang nglibataken kuantitas, struktur, ruwang, utawi \u00e9wah-\u00e9wahan. Awalipun masalah-masalah punika kapanggih ing salebetipun [[padagangan]], [[pangukuran siti]], lan salajengipun [[astronomi]]; sapunika sadaya \u00e8lmu pangertosan nganjuraken masalah-masalah ingkang dipunkaji d\u00e9ning para mat\u00e9matikawan, lan kathah masalah ingkang muncul ing salebetipun mat\u00e9matika punika piyambak. Upaminipun, satunggiling [[fisikawan]] [[Richard Feynman]] manggihaken [[rumus integral lintasan]] [[m\u00e9kanika kuantum]] migunakaken gabungan nalar mat\u00e9matika lan wawasan fisika, lan [[t\u00e9yori senar]] wekdal sapunika t\u00e9yori \u00e8lmiah ingkang taksih ngrembaka ingkang gadhah upados manunggalaken sekawan [[Interaksi dhasar|gaya dhasar alami]], teras k\u00e9mawon ngilhami mat\u00e9matika \u00e9nggal.<ref>{{cite book | title = The Feynman Integral and Feynman's Operational Calculus | author = Johnson, Gerald W.; Lapidus, Michel L. | publisher = [[Oxford University Press]] | year = 2002}}</ref> Sap\u00e9rangan mat\u00e9matika namung silih selaras ing salebetipun wewengkon ingkang ngilhami piyambakipun, lan dipuntrepaken kangg\u00e9 mecahaken masalah lajengan ing wewengkon punika. Nanging asring ugi mat\u00e9matika dipunilhami d\u00e9ning bukti-bukti ing satunggiling wewengkon pranyata gadhah mupangat ugi ing kathah wewengkon san\u00e8sipun, lan nggabungaken cawisan umum kons\u00e8p-kons\u00e8p mat\u00e9matika. Fakta ingkang ng\u00e9dab-\u00e9dabi bilih mat\u00e9matika \"paling murni\" asring malih dados gadhah patrapan praktis inggih punika ingkang [[Eugene Wigner]] sebat minangka \"[[Kaboten\u00e8f\u00e8ktifan Mat\u00e9matika boten kanalar ing salebetipun \u00c8lmu Pangertosan Alam]]\".<ref>[[Eugene Wigner]], 1960, \"[http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html The Unreasonable Effectiveness of Mathematics in the Natural Sciences,] {{Webarchive|url=https://web.archive.org/web/20110228152633/http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html |date=2011-02-28 }}\" ''[[Komunikasi ing Mat\u00e9matika Murni lan Patrapan]]'' '''13'''(1): 1\u201314.</ref></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Kados ing sap\u00e9rangan ageng wewengkon pangkajian, jeblugan pengertosan ing jaman \u00e8lmiah sampun ngarah dhumateng pangususan ing salebetipun mat\u00e9matika. Setunggal prab\u00e8ntenan utami inggih punika ing antawisipun [[mat\u00e9matika murni]] lan [[mat\u00e9matika terapan]]: sap\u00e9rangan ageng mat\u00e9matikawan musataken panlit\u00e8nipun namung ing satunggal wewengkon punika lan sok-sok pilihan punika dipundamel saawal pakuliahan program [[sarjana]]nipun. Sap\u00e9rangan wewengkon mat\u00e9matika terapan sampun dipungabungaken kaliyan tradhisi-tradhisi ingkang silih selaras ing sanjawinipun mat\u00e9matika lan dados dhisiplin ingkang gadhah hak piyambak, kalebet [[statistika]], [[ris\u00e8t oprasi]], lan [[\u00e8lmu komputer]].</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Tiyang ingkang gadhah minat dhumateng mat\u00e9matika asring ugi manggihi satunggiling asp\u00e8k \u00e8st\u00e8tika tinentu ing kathah mat\u00e9matika. Kathah mat\u00e9matikawan pirembagan prakawis ''kaanggunan'' mat\u00e9matika, [[\u00e8st\u00e8tika]] ingkang kasirat, lan [[ka\u00e9ndahan]] saking lebetipun. Kaprasajanan lan kaumumanipun dipunregani. Wonten ka\u00e9ndahan ing salebetipun kaprasajanan lan kaanggunan [[bukti (mat\u00e9matika)|bukti]] ingkang dipunparingaken, upaminipun bukti [[Euclid]] inggih punika bilih wonten boten-kakinten kathahipun [[wilangan prima]], lan ing salebetipun [[m\u00e9todhe numerik]] ingkang anggun bilih pang\u00e9tangan laju, inggih punika [[transformasi Fourier rikat]]. [[G. H. Hardy]] ing salebetipun ''[[A Mathematician's Apology]]'' ndungkapaken kapitadosan bilih panganggepan \u00e8st\u00e8tika punika ing lebetipun piyambak, cekap kangg\u00e9 nyengkuyung pangkajian mat\u00e9matika murni.<ref>{{cite book | title = A Mathematician's Apology | author = Hardy, G. H. | publisher = Cambridge University Press | year = 1940}}</ref> Para mat\u00e9matikawan asring nyambut damel awrat manggihaken bukti t\u00e9or\u00e9ma ingkang anggun kanthi mirunggan, pamadosan [[Paul Erd\u0151s]] asring nggulet ing satunggil jinis pamadosan akar saking \"[[Alkitab]]\" ing pundi [[Hyang|Gusti]] sampun nyerataken bukti-bukti karemenanipun.<ref>{{cite book | title = Proof and Other Dilemmas: Mathematics and Philosophy | author = Gold, Bonnie; Simons, Rogers A. | publisher = MAA | year = 2008}}</ref</del>><del class=\"diffchange diffchange-inline\"><ref>{{cite book | title = Proofs from the Book | author = Aigner, Martin; Ziegler, Gunter M. | publisher = Springer | year = 2001}}</ref> Kapopul\u00e8ran [[mat\u00e9matika r\u00e9kr\u00e9asi]] inggih punika tetenger san\u00e8s bilih kabingahan kathah kapanggih nalika satunggiling tiyang saged mecahaken soal-soal mat\u00e9matika.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">== Notasi, basa, lan kakakuan ==</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Gambar:Leonhard Euler 2.jpg|right|thumb|Leonhard Euler. Manawi satunggiling mat\u00e9matikawan ingkang kathah piyambak ngasilaken temuan sapanjangipun wekdal]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">{{utama|Notasi mat\u00e9matika}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Sap\u00e9rangan ageng notasi mat\u00e9matika ingkang dipungunakaken sapunika boten kapanggih dumugi abad angka 16.<ref>[http://jeff560.tripod.com/mathsym.html Panggunaan An\u00e9ka Lambang Mat\u00e9matika paling dhini] (ngamot kathah r\u00e9fer\u00e8nsi ingkang langkung tebih)</ref> Nalika abad angka 18, [[Leonhard Euler|Euler]] gadhah tanggel waler dhumateng kathah notasi ingkang dipungunakaken sapunika. Notasi modh\u00e8ren damel mat\u00e9matika langkung gampil kangg\u00e9 para prof\u00e9sional, nanging para pamula asring manggihaken minangka satunggaling prakawis ingkang ngajrihi. Dumados pamadhetan ingkang langkung sanget: sakedhik lambang gadhah isi informasi ingkang sugih. Kados [[notasi musik]], notasi mat\u00e9matika modh\u00e8ren gadhah tata ukara ingkang kaku lan ndadosaken informasi ingkang mbok manawi awrat manawi dipunserataken miturut cara san\u00e8s.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Basa]] mat\u00e9matika saged ugi gadhah kesan awrat kangg\u00e9 para pamula. Tembung-tembung kados ''utawi'' lan ''namung'' gadhah teges ingkang langkung pr\u00e9sisi tinimbang ing salebetipun pirembagan sadinten-dinten. Sasan\u00e8sipun punika tembung-tembung kados ta ''[[himpunan terbuka|kabikak]]'' lan ''[[lapangan (mat\u00e9matika)|lapangan]]'' maringaken teges mirunggan mat\u00e9matika. [[Jargon mat\u00e9matika]] kalebet istilah-istilah t\u00e8knis kados ta ''[[homomorfisme]]'' lan ''[[katerintegralan|kaintegralaken]]''. Nanging wonten alasan kangg\u00e9 notasi mirunggan lan jargon t\u00e8knis punika: mat\u00e9matika mbetahaken pr\u00e9sisi ingkang langkung saking sadrema pirembakan sadinten-dinten. Para mat\u00e9matikawan nyebat pr\u00e9sisi basa lan logika punika minangka \"kaku\" (''rigor'').</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Gambar:Infinity symbol.svg||thumb|left|Lambang [[kabotenkintenan]] '''\u221e''' ing sap\u00e9rangan gaya sajian.]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Kakakuan mat\u00e9matika|Kaku]] kanthi dhasar inggih punika prakawis [[bukti mat\u00e9matika]]. Para mat\u00e9matikawan kep\u00e9ngin t\u00e9or\u00e9manipun numuti aksioma-aksioma kanthi maksud panalaran ingkang sistematik. Pupunika kangg\u00e9 nyegah \"[[t\u00e9or\u00e9ma]]\" ingkang salah pundhut, dipundhasaraken dhumateng pradugi kagagalan, ing pundi kathah conto nat\u00e9 muncul ing salebetipun sajarah subj\u00e8k punika.<ref>Pirsani ''[[bukti palsu]]'' kangg\u00e9 conto prasaja saking prakawis-prakawis ingkang saged salah ing salebetipun bukti formal. [[T\u00e9or\u00e9ma sekawan warna#Sajarah|sajarah T\u00e9orema Sekawan Warna]] gadhah isi conto-conto bukti-bukti salah ingkang tanpa sengaja dipuntampi d\u00e9ning para mat\u00e9matikawan san\u00e8sipun ing wekdal punika.</ref> Tingkat kakakuan dipunajengaken ing salebetipun mat\u00e9matika tansah \u00e9wah sapanjangipun wekdal: [[bangsa Yunani]] m\u00e9nginaken dalil ingkang kaprinc\u00e8n, nanging ing wekdal punika m\u00e9tode ingkang dipungunakaken [[Isaac Newton]] kirang kaku. Masalah ingkang n\u00e8mp\u00e8l ing dh\u00e9finisi-dh\u00e9finisi ingkang dipungunakaken Newton bakal ngarah dhumateng munculipun analisis saksama lan bukti formal ing abad angka 19. Sapunika para mat\u00e9matikawan taksih teras adu argum\u00e8ntasi prakawis [[bukti mawi bantuan-komputer]]. Amargi pang\u00e9tangan ageng awrat sanget dipunpriksa, bukti-bukti punika mbok manawi k\u00e9mawon boten cekap kaku.<ref>Ivars Peterson, ''Wisatawan Mat\u00e9matika'', Freeman, 1988, ISBN 0-7167-1953-3. p. 4 \"Sakedhik panggresulan dhumateng kabotensagedan program komputer mriksa kanthi wajar,\" (tegesipun bukti Haken-Apple dhumateng T\u00e9or\u00e9ma Sekawan Warna).</ref></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Aksioma]] miturut pamikiran tradhisional inggih punika \"kaleresan ingkang dados bukti makaten k\u00e9mawon\", nanging kons\u00e8p punika micu pasoalan. Ing tataran formal, satunggiling aksioma punika namung satunggal l\u00e8r senar [[logika simbolik|lambang]], ingkang namung gadhah makna kasirat ing salebetipun kont\u00e8ks sadaya rumus ingkang katurunaken saking satunggiling [[sistem aksioma]]. Pupunika wujud tujuan [[program Hilbert]] kangg\u00e9 ny\u00e8l\u00e8haken sadaya mat\u00e9matika ing satunggiling basis aksioma ingkang kokoh, nanging miturut [[T\u00e9or\u00e9ma kabotenjangkepan G\u00f6del]] saben-saben sistem aksioma (ingkang cekap kiyat) gadhah rumus-rumus ingkang [[kab\u00e9basan (logika mat\u00e9matika)|boten saged dipuntemtokaken]]; lan mila satunggiling [[aksiomatisasi]] pungkasan ing salebetipun mat\u00e9matika punika mokal. Sanadyan makaten, mat\u00e9matika asring dipunbayangaken (ing salebetipun kont\u00e8ks formal) boten san\u00e8s kejawi [[t\u00e9yori himpunan]] ing sap\u00e9rangan aksiomatisasi, kanthi pangertosan bilih saben-saben pranyatan utawi bukti mat\u00e9matika saged dipunkemas dhumateng salebetipun rumus-rumus t\u00e9yori himpunan.<ref>Patrick Suppes, ''Axiomatic Set Theory'', Dover, 1972, ISBN 0-486-61630-4. p. 1, \"Ing antawisipun kathah cabang mat\u00e9matika modh\u00e8ren, t\u00e9yori himpunan nglenggahi pangg\u00e9nan ingkang unik: kanthi sakedhik pangejawinan, \u00e9ntitas-\u00e9ntitas ingkang dipunkaji lan dipunanalisis ing salebetipun mat\u00e9matika saged dipunpriksani minangka himpunan mirunggan utawi kelas-kelas obj\u00e8k tinentu.\"</ref></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">== Mat\u00e9matika minangka \u00e8lmu pangertosan ==</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Gambar:Carl Friedrich Gauss.jpg|right|thumb|[[Carl Friedrich Gauss]], nganggep piyambakipun minangka \"pang\u00e9ranipun para mat\u00e9matikawan\", lan n\u00e9lakaken mat\u00e9matika minangka \"Ratunipun \u00c8lmu Pangertosan\".]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Carl Friedrich Gauss]] n\u00e9lakaken mat\u00e9matika minangka \"Ratunipun \u00c8lmu Pangertosan\".<ref>Waltershausen</ref> Ing salebetipun basa aslinipun, Latin ''Regina Scientiarum'', ugi ing salebeting [[basa Jerman]] ''K\u00f6nigin der Wissenschaften'', tembung ingkang selaras kaliyan ''\u00e8lmu pangertosan'' ateges (lapangan) pangertosan. Cetha, punika ugi teges asli ing salebeting basa Inggris, lan boten wonten ''keraguan'' bilih mat\u00e9matika ing salebetipun kont\u00e8ks punika inggih punika satunggiling \u00e8lmu pangertosan. Pangususan ingkang nyiutaken makna dados \u00e8lmu pangertosan ''alam'' inggih punika ing temb\u00e9 wingking. Manawi satunggiling tiyang mriksani [[\u00e8lmu pangertosan]] namung winates ing donya fisika, mila mat\u00e9matika, utawi sakirang-kirangipun [[mat\u00e9matika murni]], san\u00e8s \u00e8lmu pangertosan. [[Albert Einstein]] n\u00e9lakaken bilih ''\"satebihipun hukum-hukum mat\u00e9matika tegesipun kasunyatan, mila sadaya punika boten mesthi; lan satebihipun sadaya punika mesthi, sadaya punika boten tegesipun kasunyatan.''\"<ref name=certain>Einstein, p. 28. Kutipan punika wujud jawaban Einstein dhumateng pitak\u00e8nan: \"ndak inggih bilih mat\u00e9matika, ing sisih san\u00e8sipun temtu k\u00e9mawon, dados riptan pamikiran manungsa ingkang kab\u00e9bas saking pengalaman, makaten ng\u00e9dab-\u00e9dabi silih selaras kaliyan obj\u00e8k-obj\u00e8k kasunyatan?\" Panjenenganipun ugi migatosaken ''[[Ka\u00e8f\u00e8ktifan boten kanalar Mat\u00e9matika ing salebetipun \u00c8lmu Pangertosan Alam]]''.</ref></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Kathah filsuf yakin bilih mat\u00e9matika boten [[keterpalsuan|kapalsukaken]] dhedhasar pacob\u00e8n, lan kanthi makaten san\u00e8s \u00e8lmu pangertosan per d\u00e9finisi [[Karl Popper]].<ref>{{cite book | title = Out of Their Minds: The Lives and Discoveries of 15 Great Computer Scientists | author = Shasha, Dennis Elliot; Lazere, Cathy A. | publisher = Springer | year = 1998 | page = 228}}</ref> Nanging, ing salebetipun karya wigatos taun 1930-an prakawis logika mat\u00e9matika nedhaken bilih mat\u00e9matika boten saged dipunr\u00e9dhuksi dados logika, lan Karl Popper nyimpulaken bilih \"sap\u00e9rangan ageng t\u00e9yori mat\u00e9matika, kados d\u00e9n\u00e9 [[fisika]] lan [[biologi]], inggih punika [[hipotesis|hipotetis]]-[[deduktif]]: mila mat\u00e9matika mdados langkung caket dhumateng \u00e8lmu pangertosan alam ingkang hipotesis-hipotesisipun inggih punika konjektur (kintenan), langkung tinimbang minangka prakawis ingkang \u00e9nggal.\"<ref>Popper 1995, p. 56</ref> Para wicaksana bestari san\u00e8sipun, sebat k\u00e9mawon [[Imre Lakatos]], sampun nerapaken satunggal v\u00e8rsi [[pamalsuan]] dhumateng mat\u00e9matika punika piyambak.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Satunggiling tinjauan alternatif inggih punika bilih lapangan-lapangan \u00e8lmiah tinentu (upaminipun [[fisika t\u00e9or\u00e8tis]]) inggih punika mat\u00e9matika kanthi aksioma-aksioma ingkang dipuntujokaken kados makaten sa\u00e9ngga silih selaras kaliyan kasunyatan. Faktanipun, satunggiling fisikawan t\u00e9or\u00e8tis, [[J. M. Ziman]], ngajengaken pendhapat bilih \u00e8lmu pangertosan inggih punika ''pangertosan umum'' lan kanthi makaten mat\u00e9matika kalebet ing salebetipun.<ref>Ziman</ref> Ing sap\u00e9rangan kasus, mat\u00e9matika kathah silih dundum kaliyan \u00e8lmu pangertosan fisika, sebat k\u00e9mawon pangedhukan akibat-akibat logis saking sap\u00e9rangan anggapan. [[Intuisi (pangertosan)|Intuisi]] lan [[pacob\u00e8n]] ugi gadhah peran wigatos ing salebetipun parumusan [[konjektur]]-konjektur, ing mat\u00e9matika, ugi ing \u00e8lmu-\u00e8lmu pangertosan (san\u00e8sipun). [[Mat\u00e9matika pacob\u00e8n]] teras tuwuh ngrembaka, ng\u00e8lingi kapentinganipun ing salebetipun mat\u00e9matika, salajengipun komputasi lan simulasi mainaken peran ingkang tansaya kiyat, ing \u00e8lmu pangertosan, ugi ing mat\u00e9matika, nglemahaken obj\u00e8ksi ing pundi mat\u00e9matika boten migunakaken [[m\u00e9tode \u00e8lmiah]]. Ing salebetipun bukunipun ingkang dipunterbitaken taun 2002 ''[[A New Kind of Science]]'', [[Stephen Wolfram]] gadhah dalil bilih mat\u00e9matika komputasi patut kangg\u00e9 dipunkedhuk kanthi [[empirik]] minangka lapangan \u00e8lmiah ing salebetipun hakipun/kaleresanipun piyambak.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Pendhapat-pendhapat para mat\u00e9matikawan dhumateng prakawis punika man\u00e9ka macem. Kathah mat\u00e9matikawan rumaos bilih kangg\u00e9 nyebat wewengkonipun minangka \u00e8lmu pangertosan sami k\u00e9mawon kaliyan mandhapaken kadhar kapentingan sisih \u00e8st\u00e8tikanipun, lan sajarahipun ing salebeting pitu [[seni liberal]] tradhisional; ingkang san\u00e8sipun rumaos bilih pangabaian pranala punika dhumateng \u00e8lmu pangertosan sami k\u00e9mawon kaliyan muter-muter paningal ingkang wuta dhumateng fakta bilih antarslira antawisipun mat\u00e9matika lan panerapanipun ing salebetipun \u00e8lmu pangertosan lan [[r\u00e9kayasa]] sampun ngemudhiaken kathah pangembangan ing salebetipun mat\u00e9matika. Satunggal dalan ingkang dipunmainaken d\u00e9ning prab\u00e9dan pojok paningalan punika inggih punika ing salebetipun pirembagan filsafat punapa mat\u00e9matika ''dipunripta'' (kados ing salebetipun seni) utawi ''kapanggih'' (kados ing salebetipun \u00e8lmu pangertosan). Punika wajar kangg\u00e9 [[universitas]] manawi dipunp\u00e9rang dhumateng salebetipun p\u00e9rangan-p\u00e9rangan ingkang nganth\u00e8kaken d\u00e9partem\u00e8n ''\u00c8lmu Pangertosan lan Mat\u00e9matika'', punika nedahaken bilih lapangan-lapangan punika dipunpriksani gadhah sekuthu nanging lapangan-lapangan punika boten kados kalih sisih keping dhuwit logam. Ing tataran praktisipun, para mat\u00e9matikawan limrahipun dipunklompokaken bebarengan para \u00e8lmuwan ing tataran kasar, nanging dipunpisahaken ing tataran akir. Pupunika wujud salah satunggil saking kathah prakawis ingkang dipunwigatosaken ing salebetipun [[filsafat mat\u00e9matika]].</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Bebungah mat\u00e9matika limrahipun dipunpiara supados tetep kapisah saking kasetaraanipun kaliyan \u00e8lmu pangertosan. Bebungah ingkang adiluhung ing salebetipun mat\u00e9matika inggih punika [[Fields Medal]] (medhali lapangan),<ref>\"''Fields Medal sapunika dipunsepakati paling dipuntepangi lan paling gadhah prabawa ing salebetipun mat\u00e9matika.''\" Monastyrsky</ref><ref>Riehm</ref> dipunwiwitaken taun 1936 lan sapunika dipunslenggarakaken saben sekawan taunan. Bebungah punika asring dipunanggep setara kaliyan [[Bebungah Nobel]] \u00e8lmu pangertosan. [[Wolf Prize in Mathematics]], dipunlembagaaken taun 1978, ngakeni mangsa pr\u00e8stasi, lan bebungah internasional utami san\u00e8sipun, [[Bebungah Abel]], dipuntepangaken taun 2003. Pupunika dipunanugerahaken kangg\u00e9 ruas mirunggan karya, saged wujud pang\u00e9nggalan, utawi pangrampungan masalah ingkang misuwur ing saebetipun lapangan ingkang mapan. Satunggiling dhaftar misuwur kanthi isi 23 [[masalah kabikak]], ingkang dipunsebat \"[[masalah Hilbert]]\", dipunkempalaken taun 1900 d\u00e9ning mat\u00e9matikawan [[Jerman]] [[David Hilbert]]. Prat\u00e9lan punika nggayuh pasulangan ingkang ageng ing antawisipun para mat\u00e9matikawan, lan paling sakedhik sanga saking masalah-masalah punika sapunika kapecahaken. Satunggiling dhaftar \u00e9nggal kanthi isi pitu masalah wigatos, asesirah \"[[Masalah Bebungah Milenium]]\", dipunterbitaken taun 2000. Pamecahan saben masalah punika bebungahipun [[Dollar Am\u00e9rika Sar\u00e9kat|US$]] 1 yuta, lan namung satunggal ([[hipot\u00e9sis Riemann]]) ingkang ngalami panggandhaan ing salebetipun masalah-masalah Hilbert.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">== Babagan-babagan mat\u00e9matika ==</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Gambar:Abacus 6.png|right|thumb|Satunggiling [[sempoa]], piranti \u00e9tung prasaja ingkang dipungunakaken wiwit jaman kuna.]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Dhisiplin-dhisiplin utami ing salebetipun mat\u00e9matika sepindhahipun muncul amargi kabetahan dhumateng pang\u00e9tangan ing salebetipun padagangan, kangg\u00e9 mahami gegayutan antarwilangan, kangg\u00e9 ngukur siti, lan kangg\u00e9 ngramal prastawa [[astronomi]]. Sekawan kabetahan punika kanthi kasar saged dipunkaitaken kaliyan pam\u00e9rangan-pam\u00e9rangan kasar mat\u00e9matika dhumateng salebeting pangkajian besaran, struktur, ruwang, lan \u00e9wah-\u00e9wahan (inggih punika [[aritmetika]], [[aljabar]], [[g\u00e9om\u00e8tri]], lan [[analisis mat\u00e9matika|analisis]]). Sasan\u00e8sipun pokok bahasan punika ugi wonten pam\u00e9rangan-pam\u00e9rangan ingkang dipunpisungsungaken kangg\u00e9 pranala-pranala pangdhukan saking jantung mat\u00e9matika dhumateng lapangan-lapangan san\u00e8s: dhumateng [[logika mat\u00e9matika|logika]], dhumateng [[t\u00e9yori himpunan]] ([[dhasar-dhasar mat\u00e9matika|dhasar]]), dhumateng mat\u00e9matika \u00e8mpirik saking man\u00e9ka jinis \u00e8lmu pangertosan ([[mat\u00e9matika terapan]]), lan ingkang langkung \u00e9nggal inggih punika dhumateng pangkajian kaku tumrap [[kabotenmethinan]].</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">=== Besaran ===</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Pangkajian besaran dipunawali d\u00e9ning [[wilangan]], sepindhah [[wilangan asli]] lan [[wilangan bulat]] (\"sadaya wilangan\") lan operasi aritmetika ing ruwang wilangan iku, kang dipunasifataken ing salebetipun [[aritmetika]]. Sifat-sipat ingkang langkung lebet saking wilangan bulat dipunkaji ing salebetipun [[t\u00e9yori wilangan]], saking pundi dhatengipun asil-asil popul\u00e8r kados ta [[T\u00e9or\u00e9ma Pungkasan Fermat]]. T\u00e9yori wilangan ugi nyepeng kalih masalah boten kapecahaken: [[konjektur prima kembar]] lan [[konjektur Goldbach]].</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Amargi sistem wilangan dipunkembangaken langkung tebih, wilangan bulat dipunakeni minangka [[himpunan p\u00e9rangan]] saking [[wilangan rasional]] (\"[[Pecahan (mat\u00e9matika)|pecahan]]\"). Sauntawis wilangan pecahan wonten ing salebetipun [[wilangan r\u00e9al]], ingkang dipungunakaken kangg\u00e9 nyawisaken besaran-besaran [[fungsi kontinu|kontinu]]. Wilangan r\u00e9al dipundadosaken umum dados [[wilangan kompl\u00e8ks]]. Pupunika jangkahan sepindhah saking jenjang wilangan ingkang ''beranjak'' nganth\u00e8kaken [[kuarternion]] lan [[oktonion]]. Kawigatosan dhumateng wilangan asli ugi ngarah dhumateng [[wilangan transfinit]], ingkang damel formalipun kons\u00e8p pancacahan [[kabotenkintenan]]. Wewengkon san\u00e8s pangkajian punika inggih punika ukuran, ingkang ngarah dhumateng [[wilangan kardinal]] lan salajengipun ing kons\u00e8psi kabotenkintenan san\u00e8sipun: [[wilangan aleph]], ingkang mungkinaken pabandhingan gadhah makna prakawis ukuran himpunan-himpunan ageng kabotenkintenan.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">:{| style=\"border:1px solid #ddd; text-align:center; margin: auto;\" cellspacing=\"20\"</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">| <math>1, 2, 3\\,\\!</math> || <math>-2, -1, 0, 1, 2\\,\\!</math> || <math> -2, \\frac{2}{3}, 1.21\\,\\!</math> || <math>-e, \\sqrt{2}, 3, \\pi\\,\\!</math> || <math>2, i, -2+3i, 2e^{i\\frac{4\\pi}{3}}\\,\\!</del></math></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">|-</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">| [[Wilangan asli]]|| [[Wilangan bulat]] || [[Wilangan rasional]] || [[Wilangan r\u00e9al]] || [[Wilangan kompl\u00e8ks]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">|}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">=== Ruwang ===<!-- This section is linked from [[List of basic mathematics topics]] --></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Pangkajian ruwang awalipun mawi [[g\u00e9om\u00e8tri]] \u2013 khususipun, [[g\u00e9om\u00e8tri euclid]]. [[Trigonom\u00e8tri]] madhuaken ruwang lan wilangan, lan nyakupi [[T\u00e9or\u00e9ma pitagoras]] ingkang misuwur. Pangkajian modh\u00e8ren prakawis ruwang damel saya umum gagasan-gagasan punika kangg\u00e9 nganth\u00e8kaken g\u00e9ometri kanthi dim\u00e8nsi langkung inggil, [[g\u00e9om\u00e8tri boten-euclid]] (ingkang gadhah peran wigatos ing salebetipun [[r\u00e9lativitas umum]]) lan [[topologi]]. Besaran lan ruwang gadhah peran wigatos ing salebetipun [[g\u00e9om\u00e8tri analitik]], [[g\u00e9om\u00e8tri difer\u00e8nsial]], lan [[g\u00e9om\u00e8tri aljabar]]. Ing salebetipun g\u00e9om\u00e8tri difer\u00e8nsial wonten kons\u00e8p-kons\u00e8p [[buntelan serat]] lan kalkulus [[lempitan]]. Ing salebetipun g\u00e9om\u00e8tri aljabar wonten panjlasan obj\u00e8k-obj\u00e8k g\u00e9om\u00e8tri minangka himpunan pangrampungan pepadhan [[polinom]], madhuaken kons\u00e8p-kons\u00e8p besaran lan ruwang, lan ugi pangkajian [[grup topologi]], ingkang madhuaken struktur lan ruwang. [[Grup lie]] biyasa dipinpigunakaken kangg\u00e9 ngkaji ruwang, struktur, lan \u00e9wah-\u00e9wahan. [[Topologi]] ing salebetipun kathah pacabanganipun mungkin dados wewengkon patuwuhan paling ageng ing salebetipun mat\u00e9matika abad angka 20, lan nganth\u00e8kaken [[konj\u00e8ktur poincar\u00e9]] ingkang sampun lami wonten lan [[t\u00e9or\u00e9ma sekawan warni]], ingkang namung \"kasil\" dipunbukt\u00e8kaken mawi komputer, lan d\u00e8reng nat\u00e9 dipunbukt\u00e8kaken d\u00e9ning manungsa kanthi manual.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">:{| style=\"border:1px solid #ddd; text-align:center; margin: auto;\" cellspacing=\"15\"</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">| [[Gambar:Illustration to Euclid</del>'<del class=\"diffchange diffchange-inline\">s proof of the Pythagorean theorem.svg|96px]] || [[Gambar:Sine cosine plot.svg|96px]] || [[Gambar:Hyperbolic triangle.svg|96px]] || [[Gambar:Torus.png|96px]] || [[Gambar:Mandel_zoom_07_satellite.jpg|96px]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">|-</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">|[[G\u00e9om\u00e8tri]] || [[Trigonom\u00e8tri]] || [[G\u00e9om\u00e8tri difer\u00e8nsial]] || [[Topologi]] || [[Fraktal|G\u00e9om\u00e8tri fraktal]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">|}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">=== \u00c9wah-\u00e9wahan ===</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Mahami lan njelasaken \u00e9wah-\u00e9wahan wujud t\u00e9ma biyasa ing salebetipun [[\u00e8lmu pangertosan alam]], lan [[kalkulus]] sampun ngrembaka minangka piranti ingkang penuh-daya kangg\u00e9 nylidhiki. [[Fungsi (mat\u00e9matika)|Fungsi-fungsi]] muncul ing mriki, minangka kons\u00e8p wigatos kangg\u00e9 njelasaken besaran ingkang \u00e9wah. Pangkajian kaku prakawis [[wilangan r\u00e9al]] lan fungsi-fungsi mawi pa\u00e9wah r\u00e9al dipuntepangi minangka [[analisis r\u00e9al]], kanthi [[analisis kompl\u00e8ks]] lapangan ingkang </del>''<del class=\"diffchange diffchange-inline\">setara'' kangg\u00e9 [[wilangan kompl\u00e8ks]]. [[Hipot\u00e9sis Riemann]], salah satunggil masalah kabikak ingkang paling dhasar ing salebetipun mat\u00e9matika, dipunlukisaken saking analisis kompl\u00e8ks. [[Analisis fungsional]] musataken kawigatosan dhumateng [[ruwang]] fungsi (limrahipun kanthi dim\u00e8nsi boten-ka\u00e9tang). Setunggil saking kathah terapan analisis fungsional inggih punika [[m\u00e9kanika kuantum]]. Kathah masalah kanthi alami ngarah dhumateng gegandh\u00e8ngan antawisipun besaran lan laju \u00e9wah-\u00e9wahanipun, lan punika dipunkaji minangka [[pepadhan difer\u00e8nsial]]. Kathah tandha-tandha ing alam saged dipunjelasaken migunakaken [[sistem dinamika]]; [[t\u00e9yori kakacoan]] nambah tepat dalan-dalan ing pundi kathah sistem punika mam\u00e8raken prilaku [[sistem d\u00e9terministik (mat\u00e9matika)|d\u00e9terministik]] ingkang taksih k\u00e9mawon d\u00e8r\u00e8ng kakinten.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">{| style=\"border:1px solid #ddd; text-align:center; margin: auto;\" cellspacing=\"20\"</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">| [[Gambar:Integral as region under curve.svg|96px]] || [[Gambar:Vector field.svg|96px]] || [[Gambar:Airflow-Obstructed-Duct.png|96px]] || [[Gambar:Limitcycle.jpg|96px]] || [[Gambar:Lorenz attractor.svg|96px]] || [[Gambar:Princ_Argument_C1.svg|96px]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">|-</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">| [[Kalkulus]] || [[Kalkulus v\u00e8ktor]]|| [[Pepadhan difer\u00e8nsial]] || [[Sistem dinamika]] || [[T\u00e9yori chaos]] || [[Analisis kompl\u00e8ks]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">|}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">=== Struktur ===</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Kathah obj\u00e8k mat\u00e9matika, saupami [[Himpunan (mat\u00e9matika)|himpunan]] wilangan lan [[fungsi (mat\u00e9matika)|fungsi]], mameraken struktur p\u00e9rangan lebet. Sifat-sipat struktural obj\u00e8k-obj\u00e8k punika dipunslidhiki ing salebetipun pangkajian [[grup (mat\u00e9matika)|grup]], [[glanggang (mat\u00e9matika)|glanggang]], [[lapangan (mat\u00e9matika)|lapangan]] lan sistem abstrak san\u00e8sipun, ingkang piyambakipun wujud obj\u00e8k ugi. Pupunika wujud lapangan [[aljabar abstrak]]. Satunggiling kons\u00e8p wigatos ing mriki inggih punika [[V\u00e8ktor (g\u00e9ometri)|v\u00e8ktor]], dipundadosaken umum dados [[ruwang v\u00e8ktor]], lan dipunkaji ing salebetipun [[aljabar lin\u00e9ar]]. Pangkajian v\u00e8ktor madhuaken tiga wewengkon dhasar mat\u00e9matika: besaran, struktur, lan ruwang. [[Kalkulus v\u00e8ktor]] miyaraken lapangan punika dhumateng salebetipun wewengkon dhasar kasekawan, inggih punika \u00e9wah-\u00e9wahan. [[Kalkulus tensor]] ngkaji [[kasetangkupan]] lan prilaku v\u00e8ktor ingkang dipun[[rotasi]]. Sap\u00e9rangan masalah kuna prakawis [[Kompas lan konstruksi garis lurus]] pungkasanipun kapecahaken d\u00e9ning [[T\u00e9yori galois]].</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">:{| style=\"border:1px solid #ddd; </del>text<del class=\"diffchange diffchange-inline\">-align:center; margin: auto;\" cellspacing=\"15\"</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">| [[Gambar:Elliptic curve simple.svg|96px]] || [[Gambar:Rubik</del>'<del class=\"diffchange diffchange-inline\">s cube.svg|96px]] || [[Gambar:Group diagdram D6.svg|96px]] || [[Gambar:Lattice of the divisibility of 60.svg|96px]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">|-</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">| [[T\u00e9yori wilangan]] || [[Aljabar abstrak]] || [[T\u00e9yori grup]] || [[T\u00e9yori orde]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">|}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">=== Dhasar lan filsafat ===</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Kangg\u00e9 mriksa [[dhasar-dhasar mat\u00e9matika]], lapangan [[logika mat\u00e9matika]] lan [[t\u00e9yori himpunan]] dipunkembangaken, ugi [[t\u00e9yori kategori]] ingkang taksih dipunkembangaken. Tembung majemuk \"krisis dhasar\" njelasaken pamadosan dhasar kaku kangg\u00e9 mat\u00e9matika ingkang mundhut papan ing [[dasawarsa]] 1900-an dumugi 1930-an.<ref>Luke Howard Hodgkin & Luke Hodgkin, </del>''<del class=\"diffchange diffchange-inline\">A History of Mathematics</del>''<del class=\"diffchange diffchange-inline\">, Oxford University Press, 2005.</ref> Sap\u00e9rangan kabotensarujukan ngenani dhasar-dhasar mat\u00e9matika teras lumampah dumugi sapunika. Krisis dhasar dipunpicu d\u00e9ning sap\u00e9rangan silang sengk\u00e9ta ing wekdal punika kalebet [[kontrov\u00e8rsi t\u00e9yori Cantor|kontrov\u00e8rsi t\u00e9yori himpunan Cantor]] lan [[kontrov\u00e8rsi Brouwer-Hilbert]].</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Logika mat\u00e9matika dipingatosaken kanthi mapanaken mat\u00e9matika ing satunggiling rangka kerja [[aksiom]]atis ingkang kaku, lan ngkaji asil-asil rangka kerja punika. Logika mat\u00e9matika wujud griya kangg\u00e9 [[T\u00e9yori kabotenjangkepan G\u00f6del|T\u00e9yori kabotenjangkepan kaping kalih G\u00f6del]], manawi asil ingkang paling dipunriyayakaken ing donya logika, ingkang (kanthi informal) gadhah akibat bilih satunggiling [[sistem formal]] ingkang isinipun aritmetika dhasar, manawi ''swantun'' (maksudipun sadaya t\u00e9or\u00e9ma ingkang saged dipunbukt\u00e8kaken inggih punika leres), mila ''boten-jangkep'' (maksudipun wonten t\u00e9or\u00e9ma sajatos ingkang boten saged dipunbukt\u00e8kaken ''ing salebetipun sistem punika''). G\u00f6del nedahaken cara ngonstruksi, [[sembarang]] kempalan aksioma wilangan t\u00e9or\u00e8tis ingkang dipunparingaken, satunggiling pranyatan formal ing salebetipun logika inggih punika satunggiling wilangan sajatos-satunggiling kasunyatan t\u00e9or\u00e8tik, nanging boten numuti aksioma-aksioma punika. Mila, boten wonten sistem formal ingkang wujud aksiomatisasi sajatos t\u00e9yori wilangan sapenuhipun. Logika modh\u00e8ren dipunp\u00e9rang dhumateng salebetipun [[t\u00e9yori rekursi]], [[t\u00e9yori modh\u00e8l]], lan [[t\u00e9yori pambukt\u00e8n]], lan magepokan caket kaliyan [[\u00e8lmu komputer]] [[\u00e8lmu komputer t\u00e9or\u00e8tis|t\u00e9or\u00e8tis]].</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">:{| style=\"border:1px solid #ddd; text-align:center; margin: auto;\" cellspacing=\"15\"</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">| <math> p \\Rightarrow q \\,</math>|| [[Gambar:Venn A intersect B.svg|128px]] || [[Gambar:Commutative diagram for morphism.svg|96px]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">|-</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">| [[Logika mat\u00e9matika]] || [[T\u00e9yori himpunan]] || [[T\u00e9yori kategori]] ||</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">|}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">=== Mat\u00e9matika diskr\u00e8t ===</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Mat\u00e9matika diskr\u00e8t]] inggih punika nama jamak kangg\u00e9 lapangan mat\u00e9matika ingkang paling migunani ing salebetipun [[\u00e8lmu komputer t\u00e9oretis]]. Pupunika ngath\u00e8kaken [[t\u00e9yori komputabilitas (komputasi)|t\u00e9yori komputabilitas]], [[t\u00e9yori kompl\u00e8ksitas komputasional]], lan [[t\u00e9yori informasi]]. T\u00e9yori komputabilitas mriksa watesan-watesan man\u00e9ka modh\u00e8l t\u00e9oretis komputer, kalebet modh\u00e8l ingkang dipuntepangi paling gadhah daya-[[Mesin turing]]. T\u00e9yori kompl\u00e8ksitas inggih punika pangkajian traktabilitas d\u00e9ning komputer; sap\u00e9rangan masalah, sanadyan kanthi t\u00e9oretis karampungaken d\u00e9ning komputer, nanging cekap awis miturut kont\u00e8ks wekdal lan ruwang, boten saged dipundamel kanthi praktis, malah kanthi cepetipun kamajengan [[piranti atos]] komputer. Pungkasanipun, t\u00e9yori informasi musataken kawigatosan dhumateng kathahipun data ingkang saged dipunsimpen ing m\u00e9dhia ingkang dipuparingaken, lan mila sesambetan kaliyan kons\u00e8p-kons\u00e8p saupami [[pamadhetan data|pamadhetan]] lan [[\u00c9ntropi (t\u00e9yori informasi|\u00e9ntropi]].</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Minangka lapangan ingkang r\u00e9latif \u00e9nggal, mat\u00e9matika diskr\u00e8t gadhah sap\u00e9rangan masalah kabikak ingkang kalebet masalah dhasar. Ingkang paling misuwur inggih punika masalah \"[[masalah P = NP|P=NP?]]\", salah satunggil [[Masalah Bebungah Milenium]].<ref>[http://www.claymath.org/millennium/P_vs_NP/ Clay Mathematics Institute] {{Webarchive|url=https://web.archive.org/web/20131015173412/http://www.claymath.org/millennium/P_vs_NP/ |date=2013-10-15 }} P=NP</ref></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">:{| style=\"border:1px solid #ddd; </del>text<del class=\"diffchange diffchange-inline\">-align:center; margin: auto;\" cellspacing=\"15\"</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">| <math>\\begin{matrix} (1,2,3) & (1,3,2) \\\\ (2,1,3) & (2,3,1) \\\\ (3,1,2) & (3,2,1) \\end{matrix}</math> || [[Gambar:DFAexample.svg|96px]] || [[Gambar:Caesar3.svg|96px]] || [[Gambar:6n-graf.svg|96px]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">|-</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">| [[Kombinatorika]] || [[T\u00e9yori komputasi]] || [[Kriptografi]] || [[T\u00e9yori graf]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">|}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">=== Mat\u00e9matika terapan ===</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Mat\u00e9matika terapan]] sesambetan kaliyan panggunaan piranti mat\u00e9matika abstrak kangg\u00e9 mecahaken masalah-masalah konkr\u00e8t ing salebetipun [[\u00e8lmu pangertosan]], [[bisnis]], lan wewengkon san\u00e8sipun. Satunggiling lapangan wigatos ing salebetipun mat\u00e9matika terapan inggih punika [[statistika]], ingkang migunakaken [[t\u00e9yori peluang]] minangka piranti lan marengaken panjlasan, analisis, lan paramalan tandha-tandha ing pundi [[probabilitas|peluang]] gadhah peran wigatos. Sap\u00e9rangan ageng pacob\u00e8n, survey, lan pangkajian pangamatan mbetahaken statistika. (Nanging kathah [[statistikawan]], boten nganggep piyambakipun minangka mat\u00e9matikawan, nanging minangka golongan sekuthu.) [[Analisis numerik]] nylidhiki m\u00e9tode komputasional kangg\u00e9 mecahaken masalah-masalah mat\u00e9matika kanthi \u00e8fisi\u00e8n ingkang limrahipun kalangkung amba kangg\u00e9 kapasitas numerik manungsa; analisis numerik nglibataken pangkajian [[galat pamotongan]] utawi sumber-sumber galat san\u00e8s ing salebetipun komputasi.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"><center></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"><gallery></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Gambar:Gravitation space source.png | <center>[[Fisika mat\u00e9matika]]</center></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Gambar:BernoullisLawDerivationDiagram.svg | <center>[[M\u00e9kanika fluida]]</center></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Gambar:Composite trapezoidal rule illustration small.svg | <center>[[Analisis numerik]]</center></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Gambar:Maximum boxed.png | <center>[[Optimisasi (mat\u00e9matika)|Optimisasi]]</center></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Gambar:Two red dice 01.svg | <center>[[T\u00e9yori peluang]]</center></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Gambar:Oldfaithful3.png | <center>[[Statistika]]</center></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Gambar:Market Data Index NYA on 20050726 202628 UTC.png | <center>[[Mat\u00e9matika kauangan]]</center></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Gambar:Arbitrary-gametree-solved.svg | <center>[[T\u00e9yori permainan]]</center></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Gambar:Signal transduction v1.png | <center>[[Biologi mat\u00e9matika]]</center></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Gambar:Ch4-structure.png | <center>[[Kimia mat\u00e9matika]]</center></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Gambar:GDP PPP Per Capita IMF 2008.png | <center>[[\u00c9konomi mat\u00e9matika]]</center></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Gambar:Simple feedback control loop2.svg| <center>[[T\u00e9yori kontrol]]</center></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"></gallery></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"></center></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">== [[Pipalanda]] ==</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Pipalanda punika akronim, cekakan saking tembung [[tangkaran|'''pi'''ng]], [[paran|'''pa'''ra]], [[panambahan|'''lan]] lan [[pangurangan|su'''da]]. Tembung-tembung wau wujud sekawan saking [[operasi mat\u00e9matika]] dhasar wonten ing [[aritmatika]] ingkang asring kangg\u00e9 sadinten-dinten. Urutanipun kedah kados makaten, dados manawi wonten operasi mat\u00e9matika ingkang wujud gabungan kedah dipunurut ping-pingan utawi paran lajeng panambahan utawi pangirangan.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* '''pi'''ng (tandha x) inggih punika operasi mat\u00e9matika kangg\u00e9 ngepingaken (penskalaan satungan wilangan kaliyan wilangan san\u00e8sipun.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* '''pa'''ra (tandha:) inggih punika operasi mat\u00e9matika ingkang mbagi satunggiling wilangan kaliyan wilangan san\u00e8sipun.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* '''lan''' (tandha +)\u00a0 inggih punika operasi mat\u00e9matika kangg\u00e9 nambah satunggiling wilangan kaliyan wilangan san\u00e8sipun.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* su'''da''' (tandha-)\u00a0 inggih punika operasi mat\u00e9matika kangg\u00e9 nyuda satunggiling wilangan kaliyan wilangan san\u00e8sipun.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Urutan salebeting ngayahi operasi mat\u00e9matika ingkang langkung pepak inggih punika dipunwiwiti wilangan ingkang wonten ing salebeting tandha kurung: () lan ingkang wonten ing salebeting tandha [[kurung kurawal]]: {}, dipunlajengaken urutan ping para lan suda.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Tuladha: {(10+2X3-6:2) + (9-4:2+5X1)}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">\u00c9tangan dipunwiwiti kanthi ng\u00e9tang kanthi urut kados kasebat ing ngandhap punika</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*Salebeting tandha kurung ingkang kaping sepindhah:</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">**2X3=6 (ping)</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">**6:2=3 (para)</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">**10+6=16 (lan)</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">**16-3=13 (suda)</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*Salebeting tandha kurung ingkang kaping kalih:</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">**5X1=5 (ping)</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">**4:2=2 (para)</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">**2+5=7 (lan)</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">**9-7=2 (suda)</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*\u00c9tangan pungkasan, asil saking \u00e9tangan ing salebeting tandha kurung sepindhah dipuntambah asil operasi mat\u00e9matika ing tandha kurung kaping kalih, dados: 13 + 2 = 15</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">== Ugi pirsani ==</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"><div style=\"-moz-column-count:3; column-count:3;\"></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Prat\u00e9lan simbol mat\u00e9matika]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Dh\u00e9finisi mat\u00e9matika]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Dyscalculia]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Prat\u00e9lan topik mat\u00e9matika dhasar]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Prat\u00e9lan topik mat\u00e9matika]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Mathematical anxiety]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Permainan mat\u00e9matis]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Modh\u00e8l mat\u00e9matika]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Masalah mat\u00e9matika]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Struktur mat\u00e9matika]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Mat\u00e9matika lan seni]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Lomba mat\u00e9matika]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Pendhidhikan mat\u00e9matika]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Portal:Mat\u00e9matika|Portal Mat\u00e9matika]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Pola]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Filsafat mat\u00e9matika]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Abacus]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Balung Napier]], [[Jangka sorong]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Garisan]] lan [[Kompas]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[P\u00e8tungan biyasa]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Kalkulator]] lan [[komputer]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Basa pamrograman]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Sistem komputer aljabar]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Notasi prasaja Intern\u00e8t]] </del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Analisis statistik]] [[piranti alus]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">** [[SPSS]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">** [[SAS]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">** [http://www.r-project.org R]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"></div></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">== Cathetan ==</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">{{reflist|2}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">== R\u00e9fer\u00e8nsi ==</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">{{refbegin|2}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* Benson, Donald C., ''The Moment of Proof: Mathematical Epiphanies'', Oxford University Press, USA; New Ed edition (December 14, 2000). ISBN 0-19-513919-4.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Carl B. Boyer|Boyer, Carl B.]], ''A History of Mathematics'', Wiley; 2 edition (March 6, 1991). ISBN 0-471-54397-7. \u2014 A concise history of mathematics from the Concept of Number to contemporary Mathematics.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* Courant, R. and H. Robbins, ''What Is Mathematics?: An Elementary Approach to Ideas and Methods'', Oxford University Press, USA; 2 edition (July 18, 1996). ISBN 0-19-510519-2.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Philip J. Davis|Davis, Philip J.]] and [[Reuben Hersh|Hersh, Reuben]], ''[[The Mathematical Experience]]''. Mariner Books; Reprint edition (January 14, 1999). ISBN 0-395-92968-7. \u2014 A gentle introduction to the world of mathematics.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* {{cite journal</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | last = Einstein</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | first = Albert</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | authorlink = Albert Einstein</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | title = Sidelights on Relativity (Geometry and Experience)</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | publisher = P. Dutton., Co</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | year = 1923}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* Eves, Howard, </del>''<del class=\"diffchange diffchange-inline\">An Introduction to the History of Mathematics'', Sixth Edition, Saunders, 1990, ISBN 0-03-029558-0.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* Gullberg, Jan, ''Mathematics \u2014 From the Birth of Numbers''. W. W. Norton & Company; 1st edition (October 1997). ISBN 0-393-04002-X. \u2014 An encyclopedic overview of mathematics presented in clear, simple language.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* Hazewinkel, Michiel (ed.), ''[[Encyclopaedia of Mathematics]]''. Kluwer Academic Publishers 2000. \u2014 A translated and expanded version of a Soviet mathematics encyclopedia, in ten (expensive) volumes, the most complete and authoritative work available. Also in paperback and on CD-ROM, and online [http://eom.springer.de/default.htm].</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* Jourdain, Philip E. B., ''The Nature of Mathematics'', in ''The World of Mathematics'', James R. Newman, editor, Dover, 2003, ISBN 0-486-43268-8.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Morris Kline|Kline, Morris]], ''Mathematical Thought from Ancient to Modern Times'', Oxford University Press, USA; Paperback edition (March 1, 1990). ISBN 0-19-506135-7.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* {{cite paper|url=http://www.fields.utoronto.ca/aboutus/FieldsMedal_Monastyrsky.pdf|year=2001|title=Some Trends in Modern Mathematics and the Fields Medal|author=Monastyrsky, Michael|publisher=Canadian Mathematical Society|accessdate=2006-07-28|format=PDF}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Oxford English Dictionary]], second edition, ed. John Simpson and Edmund Weiner, Clarendon Press, 1989, ISBN 0-19-861186-2.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* ''[[The Oxford Dictionary of English Etymology]]'', 1983 reprint. ISBN 0-19-861112-9.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* Pappas, Theoni, ''The Joy Of Mathematics'', Wide World Publishing; Revised edition (June 1989). ISBN 0-933174-65-9.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* {{cite journal|title=Linear Associative Algebra|first= Benjamin|last= Peirce|journal= American Journal of Mathematics|issue= Vol. 4, No. 1/4. (1881|url= http://links.jstor.org/sici?sici=0002-9327%281881%294%3A1%2F4%3C97%3ALAA%3E2.0.CO%3B2-X|pages= 97-229}} [[JSTOR]].</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* Peterson, Ivars, ''Mathematical Tourist, New and Updated Snapshots of Modern Mathematics'', Owl Books, 2001, ISBN 0-8050-7159-8.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* {{cite book | last = Paulos | first = John Allen | authorlink = John Allen Paulos | year = 1996 | title = A Mathematician Reads the Newspaper | publisher = Anchor | isbn = 0-385-48254-X}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* {{Cite book | first=Karl R. | last=Popper | authorlink=Karl Popper | title=In Search of a Better World: Lectures and Essays from Thirty Years | chapter=On knowledge | publisher=Routledge | year=1995 | isbn=0-415-13548-6}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* {{cite journal</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | last = Riehm</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | first = Carl</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | authorlink =</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | title = The Early History of the Fields Medal</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | journal = Notices of the AMS</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | volume = 49</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | issue = 7</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | pages = 778\u2013782</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | publisher = AMS</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | date = Agustus 2002</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | url = http://www.ams.org/notices/200207/comm-riehm.pdf</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | doi =</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | id =</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | accessdate = |format=PDF}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* {{cite journal| last=Sevryuk | first=Mikhail B. | authorlink = Mikhail B. Sevryuk| date = Januari 2006| title = Book Reviews| journal = [[Bulletin of the American Mathematical Society]]| volume = 43| issue = 1| pages = 101\u2013109| url = http://www.ams.org/bull/2006-43-01/S0273-0979-05-01069-4/S0273-0979-05-01069-4.pdf| format = PDF| accessdate = 2006-06-24| doi = 10.1090/S0273-0979-05-01069-4}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* {{cite book | last = Waltershausen | first = Wolfgang Sartorius von | authorlink = Wolfgang Sartorius von Waltershausen | title = Gauss zum Ged\u00e4chtniss | orig-date = 1856 | year = 1965 | publisher = S\u00e4ndig Reprint Verlag H. R. Wohlwend | isbn = 3-253-01702-8 | asin = B0000BN5SQ | url = http://www.amazon.de/Gauss-Ged%e4chtnis-Wolfgang-Sartorius-Waltershausen/dp/3253017028}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* {{cite paper|url=http://info.med.yale.edu/therarad/summers/ziman.htm|year=1968|title=Public Knowledge:An essay concerning the social dimension of science|author= Ziman, J.M., F.R.S.}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">{{refend}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">== Pranala njawi ==</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">{{sisterlinks|Mat\u00e9matika}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"><!-- {{WVS}} --></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"><div class=\"references-small\"></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [http://www.preceptorial.com/ Preceptorial] {{Webarchive|url=https://web.archive.org/web/20110129022853/http://www.preceptorial.com/ |date=2011-01-29 }} Kumpulan mat\u00e9ri lan soal mat\u00e9matika SD, SMP, SMA</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [http://www.skypoint.com/members/waltzmn/Mathematics.html Sajarah Mat\u00e9matika]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [http://freebookcentre.net/SpecialCat/Free-Mathematics-Books-Download.html Buku-buku mat\u00e9matika b\u00e9bas] Kumpulan buku mat\u00e9matika b\u00e9bas.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [http://www.mathmotivation.com/all-applications.html Panerapan Aljabar SMA] {{Webarchive|url=https://web.archive.org/web/20210309134910/http://www.mathmotivation.com/all-applications.html |date=2021-03-09 }}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Encyclopaedia of Mathematics]] ensiklopedia '''online''' saking [http://eom.springer.de Springer], Karya r\u00e9fer\u00e8nsi pascasarjana kanthi langkung saking 8.000 irah-irahan, nyerahaken m\u00e8h 50.000 gagasan ing salebetipun mat\u00e9matika.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [http://hyperphysics.phy-astr.gsu.edu/Hbase/hmat.html Situs HyperMath ing Georgia State University]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [http://www.freescience.info/mathematics.php Perpustakaan FreeScience] P\u00e9rangan mat\u00e9matika saking pabukon FreeScience</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* Rusin, Dave: [http://www.math-atlas.org/ ''The Mathematical Atlas''] {{Webarchive|url=https://web.archive.org/web/20040403120115/http://www.math-atlas.org/ |date=2004-04-03 }}. Panduan wisata liwat man\u00e9ka jinis mat\u00e9matika modh\u00e8ren. (Ugi saged kapanggih [http://www.math.niu.edu/~rusin/known-math/index/index.html ing mriki] {{Webarchive|url=https://web.archive.org/web/20061006114449/http://www.math.niu.edu/~rusin/known-math/index/index.html |date=2006-10-06 }}.)</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* Polyanin, Andrei: [http://eqworld.ipmnet.ru/ ''EqWorld: The World of Mathematical Equations'']. Satunggaling sumber '''online''' ingkang musataken kawigatosan dhumateng [[fisika mat\u00e9matika]] aljabar, diferensial biyasa, diferensial parsial, integral, lan pepadhan-pepadhan mat\u00e9matika san\u00e8sipun.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* Cain, George: [http://www.math.gatech.edu/~cain/textbooks/onlinebooks.html Buku t\u00e8ks Mat\u00e9matika '''Online'''] sumadiya '''online''' kanthi b\u00e9bas.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [http://etext.lib.virginia.edu/DicHist/analytic/anaVII.html Mat\u00e9matika lan Logika: Saarah mat\u00e9matika formal, gagasan-gagasan logis, linguistik, lan m\u00e9todologis.] Ing salebetipun ''Kamus Sajarah Gagasan.''</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [http://www-history.mcs.st-and.ac.uk/~history/ Riwayat Gesang Mat\u00e9matikawan]. [[Arsip Sajarah Mat\u00e9matika MacTutor]] sajarah \u00e8kst\u00e8nsif lan kutipan saking mat\u00e9matikawan misuwur.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [http://metamath.org/ ''Metamath'']. Satunggiling situs lan satunggiling basa, ingkang damel formal mat\u00e9matika saking dhasar-dhasaripun.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [http://www.nrich.maths.org/public/index.php Nrich] {{Webarchive|url=https://web.archive.org/web/20120101133734/http://nrich.maths.org/public/index.php |date=2012-01-01 }}, satunggiling situs panampi bebungah kangg\u00e9 para siswa kanthi yuswa wiwit gangsal taun saking [[Universitas Cambridge]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [http://garden.irmacs.sfu.ca Taman Masalah Terbuka], satunggiling [[wiki]] saking masalah mat\u00e9matika kabikak</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [http://planetmath.org/ ''Planet Math'']. Satunggiling ensiklopedia mat\u00e9matika '''online''' ingkang taksih dipunyasa, musataken kawigatosan dhumateng mat\u00e9matika modh\u00e8ren. Migunakaken [[Lisensi Dokumentasi Bebas GNU|GFDL]], mungkinaken silih gentos artikel kaliyan Wikip\u00e9dia. Migunakaken pamrograman [[TeX]].</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [http://www-math.mit.edu/daimp Sap\u00e9rangan aplet mat\u00e9matika, ing [[Institut Teknologi Massachussetts|MIT]]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* Weisstein, Eric et al.: [http://www.mathworld.com/ ''MathWorld: World of Mathematics'']. Satunggiling ensiklop\u00e9dia '''online''' mat\u00e9matika.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* Patrick Jones' [http://www.youtube.com/user/patrickJMT Tutorial Video] prakawis Mat\u00e9matika</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"></div></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">{{Babagan matematika}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">{{artikel pilihan}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Kategori:Artikel mawa basa krama]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Kategori:\u00c8lmu]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Kategori:Matematika]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n"
}
}